Что такое дифференциал в математике простыми словами
Определение. Полным дифференциалом функции многих переменных называется главная линейная относительно приращений аргументов часть малого полного приращения функции.
Рассмотрим функцию двух переменных n =2; z = f ( x , y ). Если приращение функции можно представить в виде
где — бесконечно малые функции при , соответственно, то выражение называется полным дифференциалом функции двух переменных.
Доказательство. В равенстве (*) положим . В левой части получим частное приращение функции по переменной x .
Разделим обе части на
Переходя к пределу в этом равенстве при , получим
Аналогично, полагая в равенстве (*) , имеем
Подставляя выражения для А и В в (*) и учитывая, что получим
что и требовалось доказать. Доказательство для случая функции n переменных проводится аналогично
Дифференциал
Понятие и геометрический смысл дифференциала
Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.
Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).
Это записывается так:
Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину (см. рисунок).
Почему дифференциал можно использовать в приближенных вычислениях?
Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.
О разных формах записи дифференциала
Дифференциал функции в точке x и обозначают
поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной.
Замечание. Нужно помнить, что если x – исходное значение аргумента, а — наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.
Дифференциал функции можно записать в другой форме:
Пример 1. Найти дифференциалы функций:
Решение. Применяя формулы дифференцироивания степенной и логарифмической функций из таблицы производных, а также формулу (4), находим:
Найти дифференциалы самостоятельно, а затем посмотреть решения
Пример 2. Найти дифференциал функции
1) выделив линейную часть;
Пример 3. Найти дифференциал функции
Пример 4. Найти дифференциал функции
в точках x = 0 и x = 1 .
В основном же задачи на дифференциалы — это более сложные, чем рассмотренные выше для разминки, поэтому стоит посетить страницу с решением задач на дифференциалы сложных функций. Скорее всего, вызывающие у вас трудности задачи именно к таким и относятся.
Свойства дифференциала
В этом и следующем параграфах каждую из функций будем считать дифференцируемой при всех рассматриваемых значениях её аргументов.
Дифференциал обладает свойствами, аналогичными свойствам производной:
(С – постоянная величина) (5)
Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .
Применение дифференциала в приближенных вычислениях
Установленное во втором параграфе приближенное равенство
позволяет использовать дифференциал для приближенных вычислений значений функции.
Запишем приближенное равенство более подробно. Так как
Пример 5. Пользуясь понятием дифференциала, вычислить приближенно ln 1,01.
Решение. Число ln 1,01 является одним из значений функции y = ln x . Формула (11) в данном случае примет вид
что является очень хорошим приближением: табличное значение ln 1,01 = 0,0100.
Пример 6. Пользуясь понятием дифференциала, вычислить приближенно
Решение. Число
является одним из значений функции
Так как производная этой функции
то формула (11) примет вид
Вычислить приближенно самостоятельно, а затем посмотреть решение
Пример 7. Вычислить приближенно:
Абсолютная и относительная погрешности приближенных вычислений
Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.
Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:
Если точное число неизвестно, то
Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.
Пример 8. Пользуясь понятием дифференциала, вычислить приближенно . Оценить точность полученного результата.
Решение. Рассмотрим функцию
Её производная равна
а формула (11) примет вид
В данном случае было бы нерационально вычислять приближенно следующим образом:
так как значение
не является малым по сравнению со значением производной в точке
Здесь удобно предварительно вынести из под корня некоторое число, например 4/3. Тогда
Умножая на 4/3, находим
Принимая табличное значение корня
за точное число, оценим по формулам (12) и (13) абсолютную и относительную погрешности приближенного значения:
Дифференциал функции
Пусть функция $y=f(x)$ дифференцируема в точке $x$, то есть приращение этой функции можно представить в виде суммы двух слагаемых: линейного относительно $\Delta x$ и нелинейного членов:
$\Delta y=f^<\prime>(x) \cdot \Delta x+\alpha(\Delta x) \cdot \Delta x$
где $\alpha(\Delta x) \rightarrow 0$ при $\Delta x \rightarrow 0$.
Дифференциалом функции называется линейная относительно $\Delta x$ часть приращения функции. Она обозначается как $d y$ или $d f(x)$. Таким образом:
Дифференциал функции составляет основную часть ее приращения.
Наряду с понятием дифференциала функции вводится понятие дифференциала аргумента. По определению дифференциал аргумента есть приращение аргумента:
Формулу для дифференциала функции можно записать в виде:
Отсюда получаем, что
Итак, это означает, что производная может быть представлена как обыкновенная дробь — отношение дифференциалов функции и аргумента.
Геометрический смысл дифференциала
Дифференциал функции в точке $x_$ равен приращению ординаты касательной, проведенной к графику функции в этой точке, соответствующему приращению аргумента $\Delta x$.
Производная как смысл жизни или что такое дифференциал(d)
Эта одна из статей серии «Производная как смысл жизни», сначала я хотел сделать одну огромную статью про почти все темы по дифференцированию, но я передумал и сделаю несколько статей, возможно так даже будет легче для людей которые пытаются найти конкретную для себя тему.
Начало
Для начала лучше ознакомиться со статьей о самой прозводной (скоро будет). Ну если вы ознакомились, или уже были ознакомлены то идем дальше.
Как мы уже знаем формула записи производной выглядит так:
-напоминаю, что Δx — приращение аргумента, Δy — приращение функции.
Мы должны понимать, что если мы уберем предел, то к f'(x) прибавиться коофициент, я ее называю «неточность».
Так же вполне логично, что при Δx->0, β->0, так как чем меньше мы делаем разницу между x и x₀, тем меньше значение «неточности»(в статье о производной об этом подробнее рассказано).
Теперь выразим из этого равенства приращение функции(Δy):
И на этом следует пока остановиться и рассмотреть график.
Смотрим дифференциалу в лицо
Расмотрим такой график:
Как мы знаем производная в точке равняется значению тангенса угла в этой точке, то есть f'(x)=tg(α). Так что давайте обозначим производную, ну и приращения которыми она ограничена.
Как мы видим приращение функции(Δy) как бы разделено на две части: BC и CD.
И ведь по-сути нам ведь интересна именно та часть, которая показывает на сколько изменился у относительно касательной — то есть BC, а CD — это лишь та «погрешность» которая нам не особо интересна, поэтому введем понятие дифференциала:
Дифференциал(d) — это линейная часть приращения функции.
Дифференциал функции(dy) — это главная линейная часть приращения функции.
Зная это введем обозначение на графике:
Вернемся к равенству
BD = Δy и мы знаем, что BD = BC + CD, а значит Δy = BC + CD, где BC мы назвали главной линейной частью приращения функции(dy), следовательно Δy = dy + βΔx.
Из формулы мы понимаем, что dy=f'(x)Δx.
Хорошо, мы определили чему равен дифференциал функции, а что же тогда является дифференциалом независимой пременной функции(аргумента).
Графически мы видим, что Δx никак не разделена касательной, то есть Δx это полное приращение функции, а значит dx = Δx.
Так же мы можем найти по формуле: dx = (x)’Δx = 1*Δx = Δx
И зная, что dy = f'(x)dx, мы можем выразить производную: f'(x)=dy/dx.
Немного пределов
Добавим с левой части и с правой предел
В самом начале мы сказали, что если β->0, то Δx->0 и наборот, а значит:
Зная, что f'(x)Δx = dy, мы делаем вывод, что:
Тогда так же мы можем сказать, что дифференциал функции — это приращения функции у которой приращение аргумента стремиться к нулю, ну и это следуется из того же графика.
В свою очередь dx по прежнему Δx