Метод узлов в задаче B5
Существует замечательная формула, которая позволяет считать площадь многоугольника на координатной сетке почти без ошибок. Это даже не формула, а настоящая теорема. На первый взгляд, она может показаться сложной. Но достаточно решить пару задач — и вы поймете, насколько это крутая фишка. Так что вперед!
Для начала введем новое определение:
— это любая точка, лежащая на пересечении вертикальных и горизонтальных линий этой сетки.
Обозначение:
На первой картинке узлы вообще не обозначены. На второй обозначены 4 узла. Наконец, на третьей картинке обозначены все 16 узлов.
Какое отношение это имеет к задаче B5? Дело в том, что вершины многоугольника в таких задачах всегда лежат в узлах сетки. Как следствие, для них работает следующая теорема:
Теорема. Рассмотрим многоугольник на координатной сетке, вершины которого лежат в узлах этой сетки. Тогда площадь многоугольника равна:
где n — число узлов внутри данного многоугольника, число узлов, которые лежат на его границе (граничных узлов).
В качестве примера рассмотрим обычный треугольник на координатной сетке и попробуем отметить внутренние и граничные узлы.
На первой картинке дан обычный треугольник. На второй отмечены его внутренние узлы, число которых равно На третей картинке отмечены узлы лежащие на границе, их всего
Возможно, многим читателям непонятно, как считать числа Начните с внутренних узлов. Тут все очевидно: закрашиваем треугольник карандашом и смотрим, сколько узлов попало под закраску.
С граничными узлами чуть сложнее. Граница многоугольника — замкнутая ломаная, которая пересекает координатную сетку во многих точках. Проще всего отметить какую-нибудь «стартовую» точку, а затем обойти остальные.
Граничными узлами будут только те точки на ломаной, в которых одновременно пересекаются
- Собственно, ломаная;
- Горизонтальная линия координатной сетки;
- Вертикальная линия.
Посмотрим, как все это работает в настоящих задачах.
Задача. Найдите площадь треугольника, если размер клетки равен 1 x 1 см:
Для начала отметим узлы, которые лежат внутри треугольника, а также на его границе:
Получается, что внутренний узел всего один: Граничных узлов — целых шесть: три совпадают с вершинами треугольника, а еще три лежат на сторонах.
Теперь считаем площадь по формуле:
Вот и все! Задача решена.
Задача. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см. Ответ дайте в квадратных сантиметрах.
Снова отмечаем внутренние и граничные узлы. Внутренних узлов всего Граничных узлов: из которых 4 являются вершинами четырехугольника, а еще 3 лежат на сторонах.
Остается подставить числа в формулу площади:
Обратите внимание на последний пример. Эту задачу реально предлагали на диагностической работе в 2012 году. Если работать по стандартной схеме, придется делать много дополнительных построений. А методом узлов все решается практически устно.
Важное замечание по площадям
Но формула — это еще не все. Давайте немного перепишем формулу, приведя слагаемые в правой части к общему знаменателю. Получим:
Числа n и k — это количество узлов, они всегда целые. Значит, весь числитель тоже целый. Мы делим его на 2, из чего следует важный факт:
Площадь всегда выражается целым числом или дробью. Причем в конце дроби всегда стоит «пять десятых»: 10,5; 17,5 и т.д.
Таким образом, площадь в задаче B5 всегда выражается целым числом или дробью Если ответ получается другим, значит, где-то допущена ошибка. Помните об этом, когда будете сдавать настоящий ЕГЭ по математике!
Смотрите также:
- Задача B5: метод узлов
- Тест к уроку «Площади многоугольников без координатной сетки» (средний)
- Тест к уроку «Что такое числовая дробь» (легкий)
- Типичные задачи B12 с функциями
- Симметрия корней и оптимизация ответов в тригонометрии
- B4: счетчики на электричество
- Вход для учеников
- ЕГЭ-2024
- Часть 1
- 1. Уравнения
- 2. Вероятность
- 3. Планиметрия
- 4. Тригонометрия
- 5. Стереометрия
- 6. Производные
- 7. Формулы
- 8. Текстовые задачи
- 11. Экстремумы функций
- Часть 2
- 12. Тригонометрические уравнения
- 13. Сложная стереометрия
- 14. Сложные неравенства
- 15. Экономические задачи
- 16. Сложная планиметрия
- 17. Задачи с параметром
- 18. Теория чисел
- Архив
- X1. Движение и время
- X2. Графики
- X3. Площади
- X4. Стереометрия
- X5. Экономика
- Об экзамене
- Советы
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- Школьникам
- Студентам
- Реклама
- Обо мне
- © 2010—2024 ИП Бердов Павел Николаевич
ИНН 760708479500; ОГРНИП 309760424500020 - При использовании материалов ссылка на сайт обязательна
Телефон: +7 (963) 963-99-33; почта: pavel@berdov.com - Карта сайта
Геометрия клетчатой бумаги
Этот видеоурок мы посвятим решению задач на клетчатой бумаге. Рассмотрим правило, позволяющее изобразить окружность от руки. Познакомимся с формулой Пика, с помощью которой можно вычислить площадь произвольного многоугольника с вершинами в узлах клетки.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.
Получите невероятные возможности
1. Откройте доступ ко всем видеоурокам комплекта.
2. Раздавайте видеоуроки в личные кабинеты ученикам.
3. Смотрите статистику просмотра видеоуроков учениками.
Получить доступ
Конспект урока «Геометрия клетчатой бумаги»
Клеточки на бумаге позволяют многие построения проводить только с помощью линейки, причём на этой линейке может даже не быть делений. Но всегда нужно помнить свойства геометрических фигур, ведь именно они позволяют использовать клеточки в полной мере.
Давайте разделим отрезок пополам. Для этого начертим прямоугольник так, чтобы данный отрезок был его диагональю. Мы знаем, что диагонали прямоугольника при пересечении делятся пополам. Тогда проведём в нашем прямоугольнике вторую диагональ и таким образом разделим отрезок на два равных отрезка.
Много интересного можно получить из экспериментов с прямоугольным треугольником на клетчатой бумаге.
Изобразим произвольный прямоугольный треугольник. А затем повернём его на , например, против часовой стрелки.
Измерим угол между большими сторонами (гипотенузами) получившихся треугольников. Для этого воспользуемся транспортиром. Приложим его таким образом, чтобы точка пересечения сторон совместилась с серединой основания транспортира, а одна из сторон прошла через начало отсчёта на шкале транспортира. Теперь находим штрих на шкале, через который проходит другая сторона. Помним, что мы используем ту шкалу, на которой располагается .
Видим, что этому штриху соответствует , а значит, угол между большими сторонами треугольников прямой.
Таким образом, поворачивая треугольник на , мы тем самым поворачиваем все его элементы, в том числе и стороны, на тот же угол, значит, угол между большими сторонами также равен .
Используя результат этого опыта, выполним задание. Постройте перпендикуляр к отрезку, соединившему два любых узла клетчатой бумаги.
Решение. Проведём отрезок, который соединяет два произвольных узла бумаги в клетку. Затем достроим отрезок до прямоугольного треугольника так, чтобы данный отрезок являлся гипотенузой, то есть большей стороной, а затем повернём треугольник на вокруг произвольной точки.
Получается, что гипотенуза получившегося треугольника является перпендикуляром к заданному отрезку.
Иногда бывают случаи, когда надо нарисовать окружность, а циркуля нет, но есть бумага в клетку.
На одном из предыдущих занятий мы с вами познакомились с правилом (, , ), которое позволяет изобразить окружность на клетчатой бумаге от руки. Правда, речь шла об окружности, радиус которой равен 5 клеткам.
Сейчас мы выведем правило, с помощью которого от руки можно изобразить окружность, радиус которой равен 13 клеткам.
Для удобства с помощью циркуля начертим окружность с радиусом 13 клеток с центром в узле клеток.
Итак, возьмём узел клетчатой бумаги на данной окружности. Отступив на 1 клетку вправо и на 5 клеток вверх, поставим вторую точку. Отступая от второй точки вправо на 1 клетку и вверх на 2 клетки, ставим третью точку. Далее, отступив 4 клетки вправо и 4 клетки вверх, находим четвёртую точку. Отступив 2 клетки вправо и 1 клетку вверх, поставим 5 точку. Шестая точка находится на расстоянии 5 клеток вправо и 1 клетки вверх от пятой точки.
Если соединить эти шесть точек плавной линией, получим четверть окружности.
Чтобы достроить окружность нам надо повторить эти действия ещё три раза, изменяя направление движения.
Правило, с помощью которого можно построить окружность с радиусом, равным 13и клеткам, можно записать следующим образом: , , , , .
Вернёмся к выполнению заданий. Найдите площадь прямоугольного треугольника (с катетами клетки и клетки), если все его вершины лежат в узлах клеток, а две стороны проходят по сторонам клеток. Площадь одной клетки примем за единицу.
Решение. Изобразим прямоугольный треугольник так, чтобы все его вершины лежали в узлах клеток, а две стороны проходили по сторонам клеток.
Затем достроим этот треугольник до прямоугольника так, чтобы вершины нашего треугольника совпали с вершинами прямоугольника, а стороны, которые являются катетами нашего треугольника, лежали на сторонах прямоугольника. Затем сосчитаем количество клеточек в прямоугольнике. Их 12. То есть площадь прямоугольника равна 12 (ед. кв.).
Заметим, что построенный прямоугольник состоит из двух равных прямоугольных треугольников. Тогда площадь нашего треугольника равна половине площади прямоугольника. А это (ед. кв.).
Следующее задание. Начертите два разных прямоугольных треугольника, площади которых равны 2 клеткам.
Решение. Давайте изобразим два прямоугольника, площади которых равны 4 клеткам.
Это прямоугольник со сторонами, равными 1 клетке и 4 клеткам. И квадрат со стороной, равной 2 клеткам.
Теперь в прямоугольнике проведём диагональ, которая разделит его на два равных прямоугольных треугольника. Площадь каждого из них будет равна (кл.).
Проведём диагональ в квадрате. Она разделит его на два равных прямоугольных треугольника. Площадь каждого из них будет равна (кл.).
Так, мы получили два различных прямоугольных треугольника, площадь каждого из которых равна двум клеткам.
Эта задача показывает, что для равенства фигур ещё недостаточно равенства их площадей.
Сейчас мы с вами познакомимся с формулой Пика, которая названа именем математика Георга Пика. В 16 лет он окончил школу и поступил в Венский университет. В возрасте 17 лет была опубликована его первая работа. Круг его математических интересов был очень широк. 67 его работ посвящены многим разделам математики.
Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника.
C помощью формулы Пика можно вычислить площадь произвольного многоугольника с вершинами в узлах клетки. Формула имеет вид:
Здесь – число узлов внутри многоугольника, – число узлов на границе многоугольника, включая вершины.
Найдём площадь изображённого многоугольника. Для этого сосчитаем число узлов внутри многоугольника. Оно равно 10. Теперь сосчитаем число узлов на границе, включая вершины. Оно равно 7.
Подставим полученные значения в формулу: (ед. кв.).
Получили, что площадь данного многоугольника равна (ед. кв.).
Выполним задание. Найдите площадь многоугольника, изображённого на рисунке.
Окружности на клетчатой бумаге
а) Постройте окружность, проходящую ровно через 12 узлов клетчатой бумаги.
б) Постройте окружность, проходящую ровно через 6 узлов клетчатой бумаги.
в) Постройте окружность, проходящую ровно через 5 узлов клетчатой бумаги.
Подсказка 1
Обратите внимание, что если центр окружности сам является узлом клетчатой бумаги, то количество лежащих на этой окружности узлов кратно четырём. Если же центр окружности находится в середине стороны какой-либо клеточки, то на такой окружности будет расположено чётное число узлов. Это относится и к тем случаям, когда окружность вообще не проходит через узлы клетчатой бумаги, потому что ноль делится как на 2, так и на 4 (и вообще на любое натуральное число).
Подсказка 2
Будем считать, что расстояние между соседними узлами клетчатой бумаги равно единице. Тогда на ней можно задать систему координат таким образом, чтобы множество всех узлов в точности совпадало со множеством всех точек, обе координаты которых целочисленны.
а) Воспользуйтесь тем фактом, что если центр окружности радиуса r является началом координат, то количество лежащих на ней узлов клетчатой бумаги есть число целочисленных решений уравнения
x 2 + y 2 = r 2 (1)
б) Если r 2 — нечётное целое число, то в каждой паре вида (x, y), являющейся решением уравнения (1), одно из чисел чётное, а другое — нечётное, причём количество пар, в которых первое число нечётное, равно количеству пар, в которых второе число нечётное.
в) В качестве центра такой окружности можно выбрать точку (1/3, 0).
Подсказка 3
Попробуйте изучить окружности, квадраты радиусов которых имеют вид 5 k , 5 k /4 и 5 k /9 соответственно.
Решение
а) Рассмотрим уравнение
x 2 + y 2 = 25. (2)
Его решениями являются двенадцать пар чисел вида (±5, 0), (0, ±5), (±3, ±4) и (±4, ±3). Нетрудно убедиться простым перебором, что других целочисленных решений данное уравнение не имеет. Следовательно, на окружности радиуса 5 с центром в начале координат лежит ровно 12 узлов клетчатой бумаги (рис. 1).
б) Пусть центр окружности радиуса 5/2 расположен в точке (1/2, 0). Тогда эта окружность задаётся уравнением
Домножая обе части равенства на 4, можно перейти к такому соотношению:
(2x – 1) 2 + (2y) 2 = 25. (3)
Если же сделать переобозначения вида a = (2x – 1) и b = 2y, то мы придём к уравнению вида a 2 + b 2 = 25. Оно, как мы знаем из пункта а), имеет в точности 12 целочисленных решений (потому что это решения уравнения (2)), причём ровно в половине из них число a нечётное, а число b — чётное. Значит, уравнение (3) обладает в точности шестью целочисленными решениями. А именно, ему удовлетворяют следующие пары чисел: (3, 0), (–2, 0), (2, ±2) и (–1, ±2). Таким образом, на окружности радиуса 5/2 с центром в точке (1/2, 0) лежит ровно 6 узлов клетчатой бумаги (рис. 2).
в) Внимательный читатель наверняка заметил, что решение пункта б), по существу, вытекало из пункта а). Более того, можно было рассмотреть задачу в более общем виде и доказать такое утверждение: если на окружности радиуса r, центр которой находится в начале координат, лежит 4n узлов клетчатой бумаги и число r 2 — нечётное, то на окружности радиуса r/2 с центром в точке (1/2, 0) расположено 2n узлов. Ниже на примере нашей задачи мы покажем, как подобным методом получить окружность, на которой лежит ровно n узлов.
Для начала рассмотрим окружность с центром в начале координат, радиус которой равен 25. Эта окружность задаётся уравнением
x 2 + y 2 = 625, (4)
которому, как нетрудно проверить, удовлетворяют двадцать пар целочисленных решений: (±25, 0), (0, ±25), (±7, ±24), (±24, ±7), (±15, ±20) и (±20, ±15). То есть на этой окружности находится ровно 20 узлов клетчатой бумаги.
Теперь рассмотрим окружность радиуса 25/3, центром которой является точка (1/3, 0). Задающее её уравнение имеет вид
что после соответствующих преобразований превращается в соотношение
(3x – 1) 2 + (3y) 2 = 625. (5)
Как и в пункте б), сделав замену a = (3x – 1), b = 3y, мы получим уравнение a 2 + b 2 = 625, решения которого нам известны. Осталось понять, какие из них нам подходят, а какие — нет. Но это оказывается довольно просто: если c делится на 3, то из каждой четвёрки решений вида (c, d), (c, –d), (d, c), (–d, c) подходит ровно одно. В нашем случае, это (–8, 0), (–2, ±8), (7, ±5). И таким образом, на окружности, которая задана уравнением (5), лежит ровно 5 узлов клетчатой бумаги (рис. 3).
Замечание. Глядя на пять красных точек, изображённых на рис. 3, читатель может подумать, что если последовательно соединить их друг с другом, получится правильный пятиугольник. Однако это не так: у этого пятиугольника между собой равны только три стороны, а две другие немножко меньше. В действительности на клетчатой бумаге расположить правильный пятиугольник нельзя. Как и любой другой правильный многоугольник, за исключением квадрата.
Послесловие
Придумав решение самостоятельно или ознакомившись с изложенным выше, читатель, наверное, задастся таким вопросом: правда ли, что какое натуральное число n мы ни возьмём, найдётся такая окружность, на которой лежит ровно n узлов клетчатой бумаги? Оказывается, это действительно так, причём методы построения этих окружностей не слишком отличаются от тех, которые мы уже видели. Вкратце изложим суть дела.
Ключевым моментом решения проблемы является следующая лемма.
Лемма. Уравнение x 2 + y 2 = 5 k имеет ровно 4(k + 1) целочисленных решений для любого целого неотрицательного k.
(На самом деле представленная лемма является частным случаем более общего факта. Именно, пусть r(n) обозначает число всевозможных способов представления натурального n в виде суммы квадратов пары целых чисел. Тогда можно доказать, что r(n) = d1(n) – d3(n), где d1(n) и d3(n) — числа, отвечающие количеству делителей n вида (4k + 1) и (4k + 3) соответственно.)
Для доказательства мы проверяем сначала, что утверждение леммы справедливо при k = 0 и k = 1. В самом деле, уравнение x 2 + y 2 = 1 имеет четыре целочисленных решения: (0, ±1) и (±1, 0). А уравнение x 2 + y 2 = 5 обладает ровно восемью корнями: (±2, ±1) и (±1, ±2).
Потом в дело вступает принцип математической индукции. С его помощью можно доказать, что при всех целых k > 1 уравнение x 2 + y 2 = 5 k имеет ровно восемь таких решений (x, y), что x и y не делятся на 5. Точно так же, как и корни уравнения x 2 + y 2 = 5, эти восемь пар чисел получаются друг из друга перестановкой x и y и изменениями знаков. А вместе с 4(k – 1) парами вида (5a, 5b), где (a, b) — решения уравнения a 2 + b 2 = 5 k –2 , они дают нам в точности 4(k + 1) решений исходного уравнения.
Теперь, вооружившись леммой, мы легко сможем дать ответ на поставленный вопрос. Из соображений симметрии ясно, что если расположить центр окружности в узле клетчатой бумаги (например, в начале координат), то количество лежащих на ней узлов будет делиться на четыре. А из леммы сразу вытекает, что если квадрат радиуса такой окружности равен 5 k , то на этой окружности лежит ровно 4(k + 1) узлов. В частности, на окружности x 2 + y 2 = 25 расположено ровно 12 узлов клетчатой бумаги.
В качестве примера окружности, на которой лежит произвольное наперёд заданное чётное число узлов клетчатой бумаги, мы можем взять окружность, заданную уравнением:
Чтобы убедиться в том, что она годится (то есть что на ней лежит 2(k + 1) узлов), достаточно повторить рассуждения из решения пункта б) и применить лемму. Если же хочется провести окружность через нечётное число узлов, то можно взять такую:
Используя лемму и свойства делимости на 3, можно доказать, что на ней лежит ровно (2k + 1) узлов, а выбирая подходящее k, это количество можно сделать любым наперёд заданным нечётным числом.
Окружности, которые задаются уравнениями (6) и (7), называются окружностями Шинцеля, по имени польского математика Анджея Шинцеля (Andrzej Schinzel). Отметим, что для данного натурального числа n эти уравнения задают, вообще говоря, не самую маленькую окружность с n узлами клетчатой бумаги на ней. Например, так происходит с n = 1 (очевидно, можно предъявить окружность сколь угодно маленького радиуса) или с n = 4 (здесь ясно, что существует окружность радиуса 1/√2. Менее тривиальный пример: n = 9. Соответствующая окружность Шинцеля имеет радиус 625/3, однако на окружности с центром (1/3, 0) и радиусом 65/3 также лежит ровно 9 узлов клетчатой бумаги.
Существуют также и менее тривиальные комбинации точек. Так, на рис. 4 изображена окружность с центром в точке (1/5, 2/5) и радиусом — на ней лежат четыре узла клетчатой бумаги: (–6, –2), (1, 7), (5, 5) и (2, –6). А на окружности с центром в точке (1/7, 2/7) и радиусом находятся пять узлов: , , , и (рис. 5).
Описание множества окружностей, которые проходят ровно через n узлов клетчатой бумаги для заданного натурального числа n, — пока нерешённая задача. Предполагается, что окружность, проходящая более чем через три узла, — достаточно редкое явление, то есть если провести окружность через три случайно выбранных узла клетчатой бумаги, то через четвёртый она пройдёт с малой вероятностью.
С этой задачей также связан вопрос об изображении круга на экране монитора. Будем считать, что экран представляет собой прямоугольный лист клетчатой бумаги, а круг на экране — объединение тех клеточек (пикселей), которые пересекаются со внутренностью круга. Тогда вопрос заключается в том, сколько различных изображений на экране имеет круг данного радиуса. Например, на рис. 6 представлено три различных изображения круга радиуса 4/5 (сторона клеточки, соответственно, равна единице). Полного ответа на этот вопрос пока тоже нет.
При подготовке данной публикации использовалась статья В. Вавилова и А. Устинова Окружности на решетках («Квант» №6, 2006), в которой обсуждаются некоторые свойства целочисленных решеток и расположение окружностей на них.
Задачи на квадратной решетке
Площадь фигур на координатной сетке или плоскости можно решить несколькими способами:
1. Достроить фигуру до прямоугольника или квадрата.
2. Найти площадь прямоугольника.
3. Найти площади всех дополнительных фигур (чаще всего это прямоугольные треугольники или трапеции).
4. Из площади прямоугольника вычесть все площади дополнительных фигур.
Найдите площадь четырёхугольника, вершины которого имеют координаты $(0;5), (4;7), (7;0), (11;2)$.
1. Достроим параллелограмм до прямоугольника
2. Найдем длину и ширину прямоугольника:
Чтобы найти длину стороны, параллельную какой либо оси, надо из большей координаты отнять меньшую координату.
Длина стороны $EF= 11$, стороны $FK= 7$. Подставим в формулу площади данные и сделаем вычисления: $S_= 11·7=77$.
3. Найдем площади дополнительных (ненужных) фигур:
4. Из площади прямоугольника вычтем все площади дополнительных фигур и таким образом получим площадь искомого параллелограмма.
- Второй способ
1. Если линии фигуры идут ровно по клеточкам и можно посчитать длины сторон, высот и т.д., то считаем клеточки и определяем величины.
2. Подставляем известные значения в формулу площади.
- Третий способ.
Площадь искомой фигуры можно найти по формуле Пика:
$S=/+В-1$, где $Г$ — количество узлов на границе фигуры (на сторонах и вершинах);
$В$ — количество узлов внутри фигуры.
Узел – это уголок клетки или пересечение линий
Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки $1 см × 1$ см. Ответ дайте в квадратных сантиметрах.
Отметим красными точками узлы на границе фигуры (Г), а желтыми – узлы внутри фигуры (В).
Подставим данные в формулу Пика: $S=/+6-1=3.5+6-1=8.5$
Площади некоторых фигур
Площадь треугольника:
- $S=/$, где $h_a$ — высота, проведенная к стороне $а$
- Для прямоугольного треугольника $S=/$, где $а$ и $b$ — катеты прямоугольного треугольника.
- Для равностороннего треугольника $S=/$, где $а$ — длина стороны.
Площади четырехугольников:
- Прямоугольник $S=a·b$, где $а$ и $b$ — смежные стороны.
- Ромб $S=/$, где $d_1$ и $d_2$ — диагонали ромба
- Трапеция $S=/$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
- Квадрат $S=a^2$, где $а$ — сторона квадрата.
- Параллелограмм $S=a·h_a$, где $h_a$ — высота, проведенная к стороне $а$.
Площадь круга:
$S=π·R^2$, где $π=3.14, R$ — радиус окружности.
Площадь сектора:
$S=n°>/=/$, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.
Площадь кольца:
В прямоугольнике и квадрате центр описанной окружности лежит в точке пересечения диагоналей, а радиус описанной окружности равен половине диагонали.
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы и радиус равен половине гипотенузы.
Углы в окружности.
1. Угол, образованный двумя радиусами, называется центральным. Центральный угол равен градусной мере дуги, на которую он опирается.
2. Угол, вершина которого лежит на окружности, а стороны являются хордами, называется вписанным. Вписанный угол равен половине градусной меры дуги, на которую он опирается
Найдите величину угла MPK. Ответ дайте в градусах.
Угол $МРК$ равен половине градусной меры дуги $МК$, так как он вписанный. Чтобы отыскать градусную меру дуги, посмотрим, на сколько таких дуг мы можем разделить всю окружность, потом $360°$ разделим на полученное количество.
Дуга $МК$ отсекается хордой, занимающей две клетки. Разделим такими хордами всю окружность, получилось $8$ дуг.
$360:8=45°$, составляет градусная мера дуги $МК$.
Прямые на координатной плоскости
Координаты середины отрезка равны среднему арифметическому координат его концов.
Найдите абсциссу середины отрезка, соединяющего точки $В(2;8)$ и $A(6;4)$.
Пусть точка $М$ – середина отрезка $ВА$. Чтобы найти абсциссу данной точки, надо найти среднее арифметическое абсцисс концов отрезка:
Уравнение прямой, проходящей через две заданные точки на плоскости имеет вид $y=kx+b$, где $k$ и $b$ – это коэффициенты.
Уравнение можно задать с помощью формулы:
Точки пересечения прямой с осями координат:
Если прямая пересекает ось Ох, то в уравнении прямой координата $у = 0$, а если прямая пересекает ось Оу, то уравнении прямой координата $х = 0$.
Две прямые на координатной плоскости будут параллельны, если в уравнениях прямых будут равны коэффициенты k.
Если уравнение первой прямой: $y=k_x+b_1$;
Уравнение второй прямой: $y= k_x+b_2$, то при параллельности прямых, $k_1=k_2$.