Модификатор Edit Normals и управление нормалями. 3ds Max
Изучая полигональное моделирование, постоянно встречается упоминание о «нормалях». При этом увидеть их нигде не получается. Но благодаря модификатору Edit Normals эти скрытые элементы можно не только увидеть, но и редактировать.
1. Нормали и что они делают
Нормалями обладает каждая точка Vertex объекта. Точка может иметь одну или несколько нормалей. Количество нормалей зависит от числа полигонов, объединенных этой точкой. Нормали влияют на то, как поверхность объекта будет отражать свет.
Положение нормалей можно связать со сглаженностью объекта. Если точка имеет несколько нормалей, то каждая из них будет перпендикулярна одному из прилежащих полигонов. Когда у полигона все точки такие, то он получается жестким и несглаженным.
В случае, если точки имеют одну нормаль, то полигон будет сглаживаться. Причем, такая точка будет сглаживать все прилежащие полигоны, но не целиком.
Именно из-за правильного отражения света объект выглядит сглаженным или неровным даже при малом числе полигонов.
2. Edit Normals
Все указанные действия совершаются в модификаторе Edit Normals. Чтобы им пользоваться, нужно создать любой геометрический объект и перейти в Modify – Modifier List – Edit Normals. В зависимости от объекта и его сглаженности, нормали могут располагаться иначе.
Select By – режимы выбора нормалей.
Normal – выбор каждой отдельной нормали.
Vertex – выбор всех нормалей, принадлежащих одной точке.
Edge – выбор всех нормалей, принадлежащих одному ребру. Если у точки несколько нормалей, то выбираются не все.
Face – выбор всех нормалей, принадлежащих фейсам (Face). Если у точек несколько нормалей, то выбираются не все.
Ignore Backfacing – игнорирование задних нормалей при выделении.
Show Handles – отображение маркеров на вершинах нормалей.
Display Length – значение длины прямой, отображающей нормаль.
Unify – усредняет направление всех нормалей в точке. Общее направление задается относительно прилежащих полигонов. Включение функции Unify/Break to Average усредняет нормали по их среднему направлению. Полигоны в этом случае не влияют.
Break – разделяет одну нормаль на шесть. Все они будут направлены так, чтобы быть перпендикулярными своим полигонам. Включение функции Unify/Break to Average также разделяет нормали, но сохраняет их направление.
Average – инструмент усреднения нормалей.
Selected – устанавливает все выбранные нормали в одно, общее положение.
Use Threshold – установка дистанции. За пределами этой дистанции нормали не будут усредняться, даже если были выбраны. Эта функция полезна, чтобы не перенаправить случайно выделенную нормаль.
Target – усреднение двух нормалей с помощью целевого выбора. Включив функцию Target, нажмите сначала на одну нормаль, затем на вторую. Обе нормали усредняются по общему для них значению.
Pixels – дальность в пикселях между курсором и нормалью. Это значение регулирует точность наведения курсора на нормаль в режиме Target.
Copy Value – копирование направления выбранной нормали.
Paste Value – присвоение скопированного направления новой, выделенной нормали.
Specify – присваивает нормали тип Specified.
Нормали такого типа не учитывают группы сглаживания, присвоенные объекту.
Reset – восстанавливает изначальное положение нормали.
Make Explicit – присваивает нормали тип Explicit.
Нормали такого типа задаются для того, чтобы можно было их перемещать и вращать.
3. Передвижение и вращение нормалей
Нормали, как и другие подобъекты, можно перемещать и вращать. Для этого их нужно просто выделить и воспользоваться инструментом Select and Move/Rotate на панели Main Toolbar. Тип Explicit, необходимый для подобных изменений, будет назначен автоматически.
Редактирование нормалей – инструмент тонкой настройки объекта. Обычно им пользуются косвенно через функцию или модификатор Smooth, через Smoothing Groups. Тем не менее, нормали несут очень важную информацию – способ отображения поверхности объекта. Поэтому даже если не приходится их редактировать, обязательно нужно понимать принцип их работы.
Освойте профессию визуализатора
Научитесь создавать крутые рендеры, панорамы 360, виртуальные туры и анимационные ролики.
Имитируя объём: как карты нормалей помогают заменить высокополигональные объекты
Что такое карты нормалей, и как происходит их запекание для низкополигональных моделей.
3D-художник Карлос Лемос опубликовал на сайте 80 LEVEL туториал, в котором подробно рассказал о принципах, на основе которых работают карты нормалей, а также поэтапно описал процесс запекания. А мы выбрали из него ключевую информацию, которая поможет новичкам разобраться в этой теме.
Как работают карты нормалей
Чтобы понятнее объяснить принципы работы карт нормалей, Лемос обратился к истории 3D-моделирования. Первые 3D-модели выглядели примерно так.
Главная проблема таких моделей в ярко выраженных полигонах
Первое очевидное решение этой проблемы состояло в увеличении количества полигонов — это сделало поверхность более ровной и гладкой.
Но для визуальной гладкости объекта требовалось огромное количество полигонов, что негативно сказывалось на производительности. Поэтому нужно было иное решение. Им как раз и стали карты нормалей.
Принцип работы нормалей проще всего показывать на наглядном примере. Если провести от центра полигона линию, которая будет перпендикулярна его поверхности, то это и будет нормаль. Её цель состоит в том, чтобы контролировать направление поверхности. Когда свет падает на поверхность, используется именно эта нормаль, чтобы правильно рассчитать отражение.
Когда свет попадает на полигон, угол светового луча сравнивается с нормалью. При отражении используется тот же угол относительно нормали
Иными словами, отражение света будет симметричным относительно нормали полигона. Именно так работают отражения в реальном мире.
По умолчанию все полигоны отражают световые лучи перпендикулярно своей поверхности (как в реальности), потому что нормали полигона по умолчанию перпендикулярны поверхности полигона.
Если в нормалях есть пробелы, то это будет выглядеть как отдельные поверхности, так как свет будет отражаться от них по-разному
Если же соединить две грани, то получится плавный переход между нормалями разных поверхностей
Благодаря этому поверхность воспринимается гладкой — результат можно сравнить с моделью, состоящей из огромного количества полигонов. Именно по этому принципу работают группы сглаживания в 3ds Max, Blender и устанавливается рёбра как hard или smooth в Modo, Maya.
Количество полигонов у сфер одинаковое, а гладкость на вид абсолютно разная
Этот эффект можно применить даже к кубу, но результат будет выглядеть странно
Чтобы не получалось таких странных объектов, существует угол сглаживания — если угол, под которым соединяются полигоны, выше угла сглаживания, то переход будет мягким, если ниже, то жёстким.
Тем не менее нормали полигонов используются скорее для нанесения текстур, искривляющих отражение света, а не для сглаживания переходов между полигонами. Для этого в первую очередь используются нормали вершин (вертексные нормали). В основе этого подхода лежит примерно та же идея, но немного более сложная.
Каждая вершина может иметь одну или несколько связанных нормалей. Если у неё есть одна нормаль, то она называется усреднённой нормалью вершины (averaged vertex normal), а если несколько, то разделённой (split vertex normal).
Допустим, есть два полигона, соединённых ребром. Если переход между двумя гранями гладкий, то каждая вершина имеет одну нормаль с усреднённым значением нормалей полигонов.
У средней вершины есть одна нормаль, чьё направление равно среднему показателю между другими связанными нормалями вершин
Если переход жёсткий, то каждая вершина имеет несколько нормалей — так появляется пробел, который визуально разделяет две плоскости. Это и называется разделённой нормалью вершины.
У разделённой вершины есть несколько нормалей — по одной параллельной для каждой связанной вершины
Чтобы воссоздать отражающие свойства высокополигональной модели на низкополигональной модели, как раз и применяются карты нормалей — она запекается в виде текстуры и накладываются на нужный объект. Вся информация о том, как модель должна отражать свет, хранится в текстуре. Это и называется картой нормалей.
Запекание карты нормалей
Чтобы объяснить принцип запекания карты нормалей, начнём с примера.
Допустим, у нас есть такая низкополигональная модель с четырьмя вершинами
А это высокополигональная модель, на основе которой нужно сделать карту нормалей для предыдущей плоскости
Нормали нельзя просто взять и перенести на другой объект, потому что на лоуполи-модели нет нужных полигонов. Чтобы нормали на лоуполи правильно имитировали затенение, им нужно придать такое же направление, как и на хайполи.
Обратите внимание на третий этап — программа для запекания смотрит на то, в каком направлении находятся нормали хайполи-модели. На следующем шаге она придаёт такое же направление нормалям на лоуполи-модели
Результат запекания
Движок использует текстуру для «модификации» низкополигональных моделей, что позволяет им отражать свет так же, как высокополигональным. Но это всего лишь текстура, поэтому она не может повлиять на реальную форму и силуэт объекта.
Стоит помнить, что карты нормалей — это не обычные текстуры: они содержат информацию о нормалях, а не о цвете. Но карту нормалей можно представлять как набор из трёх текстур, содержащихся в одном изображении.
Красный канал показывает, как модель должна выглядеть при освещении справа, зелёный — сверху или снизу, а синий — спереди
В заключение пройдёмся по ключевым вещам, которые описаны в тексте. Нормали — это векторы, которые используются для определения того, как свет отражается от поверхности. Они могут применяться для управления переходом между гранями: через усреднение нормалей связанных вершин, чтобы сделать плавный переход, или разделение, чтобы сделать жёсткий переход.
Также нормали можно применять для создания низкополигональной модели, которая сможет отражать свет так же, как высокополигональная модель. Эта информация хранится в трёх отдельных каналах изображения, и 3D-редактор считывает её, чтобы понять, в каком направлении должен падать свет.
Это норма: что такое карты нормалей и как они работают
На протяжении нескольких лет я пытался разобраться в картах нормалей и в проблемах, которые обычно возникают при работе с ними.
Большинство найденных объяснений было слишком техническим, неполным или чересчур сложным для моего понимания, поэтому я решил попробовать объяснить собранную мной информацию. Я понимаю, что эти объяснения могут быть неполными или не совсем точными, но всё равно попробую.
Первые созданные человеком 3D-модели выглядели примерно так:
Это замечательно, но у такой модели есть очевидное ограничение: она выглядит слишком полигональной.
Наиболее очевидное решение: добавить больше полигонов, сделав поверхность более равномерной и гладкой, вплоть до того, чтобы полигоны казались единой гладкой поверхностью. Но оказывается, для того, чтобы сделать поверхности наподобие сфер гладкими, нужно огромное количество полигонов (особенно сегодня).
Требовалось другое решение, и так были изобретены нормали. (Всё происходило не совсем так, но так проще объяснять и понимать.)
Давайте проследим за линией из центра полигона, перпендикулярной его поверхности. Мы дадим этой линии очень непривычное название: нормаль. Цель нормали — контролировать, куда указывает поверхность, чтобы когда свет отразиться от этой поверхности, она могла использовать нормаль для вычисления получившегося отражения. Когда свет падает на полигон, мы сравниваем угол луча света с нормалью полигона. Луч отражается под тем же углом относительно направления нормали:
Другими словами, отражение света будет симметрично относительно нормали полигона. Именно так работает большинство отражений в реальном мире. По умолчанию лучи света отражаются от всех полигонов совершенно перпендикулярно к их поверхности (как должны это делать в реальной жизни), потому что нормали полигона по умолчанию перпендикулярны к поверхности полигона. Если в нормалях будут пробелы, то мы увидим их как отдельные поверхности, поскольку свет отразится в одном или другом направлении.
Если две грани соединены, то мы можем попросить компьютер сгладить переход между нормалью одного полигона к другому, чтобы нормали постепенно выстраивались в соответствии с ближайшей нормалью полигона. Таким образом, когда свет попадёт ровно в центр одного полигона, то он отразится прямо, в соответствии с направлением нормали. Но между полигонами это направление нормали сглаживается, изменяя отражение света.
Мы будем воспринимать переход как единую поверхность, потому что свет будет отражаться между одним и другим полигоном плавным образом, и между ними не будет пробелов. По сути, свет отражается от этих полигонов плавно, как будто у нас имеется множество полигонов.
Именно этим мы управляем, задавая smoothing groups (3ds Max, Blender) или указывая рёбра как hard или smooth (Modo, Maya): мы сообщаем программе, какие переходы между гранями должны быть плавными, а какие — жёсткими.
Вот сравнение одной сферы из 288 полигонов с жёсткими и плавными переходами:
Потенциально мы можем задать нечто вроде параллелепипеда, чтобы все его вершины имели усреднённые нормали. 3D-редактор будет стремиться сгладить его поверхность, чтобы она выглядела как единая плавная поверхность. Для 3D-редактора это вполне логично, но выглядит очень странно, потому что у нас есть объект, который очевидно должен иметь несколько отдельных поверхностей (каждая грань параллелепипеда), однако программа пытается показать их как одну плавную поверхность.
Именно поэтому в 3D-редакторах обычно есть параметр углов сглаживания: если у нас есть два связанных полигона под углом, превышающем угол сглаживания, то их переход будет плавным, а соединение полигонов под углом меньше угла сглаживания будет жёстким. Благодаря этому крутые углы между поверхностями будут отображаться как разные поверхности, как это и бывает в реальном мире.
Итак, мы использовали нормали для контроля над переходами между гранями модели, но можно пойти ещё дальше.
Так как мы меняем способ отражения света от объекта, можно также сделать так, чтобы очень простой объект отражал свет, как сложный. Это называется картой нормалей. Мы используем текстуру для изменения направления света, отражающегося от 3D-объекта, заставляя его выглядеть сложнее, чем он есть на самом деле.
Примером из реального мира могут служить голограммы, которые раньше вручали в подарок при покупке картофельных чипсов (по крайней мере, у нас, в Испании). Они совершенно плоские, но отражают свет так, как бы это делал 3D-объект, благодаря чему становятся сложнее, чем на самом деле. В мире 3D-графики это работает даже лучше, но всё равно имеет свои ограничения (поскольку поверхность остаётся плоской).
Хоть мы и применяем нормали полигонов для реализации какой-то чёрной магии, на самом деле мы не контролируем сглаживание поверхности модели при помощи нормалей полигонов. Мы используем нормали вершин для контроля сглаживания нормалей. По сути, идея та же, но немного более сложная.
С каждой вершиной может быть связано одна или несколько нормалей. Если она имеет одну нормаль, то можно назвать её усреднённой нормалью вершины, а если несколько — то разделённой нормалью вершины.
Давайте возьмём два полигона, соединённых ребром. Если переход между двумя гранями плавный (если мы указали его как плавный в Maya/Modo, или обе имеют одинаковую smoothing group в Max/Blender), то каждая вершина имеет одну нормаль, которая является средней нормалей полигонов (поэтому она и называется усреднённой нормалью вершины). Важное примечание: до недавнего времени каждый 3D-редактор использовал собственный способ вычисления усреднённых нормалей вершин, то есть карты нормалей, вычисленные в одной программе, в другой могли выглядеть совершенно иначе. Подробнее об этом я расскажу во второй части туториала.
Если переход жёсткий (hard edge или разные smoothing groups), то каждая вершина имеет несколько нормалей: по одной для каждой соединённой вершины, выровненной по их нормалям. При этом между нормалями образуется пробел, который выглядит как две разные поверхности. Именно это называется разделённой нормалью вершины.
Как вы могли догадаться, контроль нормалей вершин очень важен, если мы хотим контролировать карты нормалей. К счастью, нам не обязательно изменять нормали напрямую или даже видеть их, но понимание того, как это работает, поможет вам понять, почему мы выполняем работу именно так и больше разбираться в проблемах, с которыми мы можем встретиться.
При запекании карты нормалей мы по сути говорим программе изменить направление, которому следуют нормали lowpoly-модели, так, чтобы они соответствовали направлению в highpoly-модели; поэтому lowpoly-модель будет отражать свет так же, как highpoly. Вся эта информация хранится в текстуре под названием «карта нормалей». Давайте рассмотрим пример.
Допустим, у нас есть вот такая низкополигональная модель (lowpoly). Плоская поверхность с четырьмя вершинами и настроенными UV, которые программа запекания будет использовать для создания карты нормалей.
И она должна получить информацию о нормалях от этой высокополигональной (highpoly) модели, нормали которой сложнее.
Помните, что мы переносим только информацию о нормалях, то есть UV, материал, топология, преобразования и т.п. к делу не относятся. Проверенное правило: если highpoly-модель выглядит хорошо, то её нормали тоже хороши и вполне должны подходить для запекания.
Программа запекания берёт lowpoly-модель и испускает лучи, следуя по направлениям нормалей lowpoly (именно поэтому нам нужно контролировать нормали lowpoly). Эти лучи имеют ограниченную длину чтобы не получать информацию нормалей от далёких граней (обычно это расстояние называется bake distance или cage distance). Когда эти лучи сталкиваются с highpoly, программа запекания вычисляет, как отразить эти лучи, чтобы они следовали по направлению нормалей highpoly, и сохраняет эту информацию в карту нормалей.
Вот результат запекания для нашего примера:
У нас есть текстура, которую движок использует для изменения нормалей lowpoly, чтобы свет отражался от этой lowpoly-модели так же, как он отражался бы от highpoly-версии. Не забывайте, что это только текстура, которая не влияет на силуэт lowpoly-модели (невозможно изменить способ отражения света от модели, если свет не падает на эту модель).
Хотя понятно, что можно «считать» внешний вид highpoly по внешнему виду карты нормалей, очевидно, что карты нормалей — это не обычные текстуры, потому что они хранят информацию не о цвете, а о нормалях. Также это значит, что карты нормалей нельзя рассматривать как обычные текстуры; к тому же, как мы увидим, они обладают особыми параметрами сжатия и гамма-коррекции.
Можно воспринимать карту нормалей как набор из трёх текстур в оттенках серого, хранящийся в одном изображении:
Первое изображение сообщает движку, как эта модель должна отражать свет, падающий справа; оно хранится в красном канале текстуры карты нормалей.
Второе изображение сообщает движку, как модель должна отражать свет, падающий снизу*; оно хранится в зелёном канале текстуры карты нормалей.
*В некоторых программах свет падает не снизу, а сверху, то есть могут быть «левосторонние» и «правосторонние» карты нормалей. Как мы увидим позже, это может вызывать некоторые проблемы.
Третье изображение сообщает движку, как модель должна отражать свет, падающий спереди; оно хранится в синем канале текстуры карты нормалей. Так как большинство объектов при освещении спереди выглядят белыми, карты нормалей обычно кажутся синеватыми.
Когда мы комбинируем все три изображения в одно, то получаем карту нормалей. Помните, что это объяснение не полностью корректно, но надеюсь, что оно позволит вам понять информацию, хранящуюся внутри карты нормалей, и лучше разобраться, что она делает.
Нормали — это векторы, которые используются для определения того, как свет отражается от поверхности. Их можно использовать для контроля над переходом между гранями (усреднением нормалей соединённых вершин для создания плавного перехода или разделением их для создания жёсткого перехода), но также их направление можно изменять, чтобы lowpoly-модель отражала свет так же, как более сложная модель.
Эта информация хранится в трёх отдельных каналах изображения, и 3D-редактор считывает её, чтобы понять, в каком направлении должна смотреть поверхность модели.
В следующей статье цикла мы поговорим о том, как можно запекать эти детали из highpoly-модели в lowpoly.
- карты нормалей
- запекание нормалей
- 3d-редакторы
- normal mapping
- Работа с 3D-графикой
- Разработка игр
Современная терминология 3D графики — Normal Mapping
Нормалмаппинг — это улучшенная разновидность техники бампмаппинга, описанной ранее, расширенная ее версия. Бампмаппинг был разработан Блинном (Blinn) еще в 1978 году, нормали поверхности при этом методе наложения рельефа изменяются на основе информации из карт высот (bump map). В то время как бампмаппинг всего лишь изменяет существующую нормаль для точек поверхности, нормалмаппинг полностью заменяет нормали при помощи выборки их значений из специально подготовленной карты нормалей (normal map). Эти карты обычно являются текстурами с сохраненными в них заранее просчитанными значениями нормалей, представленными в виде компонент цвета RGB (впрочем, есть и специальные форматы для карт нормалей, в том числе со сжатием), в отличие от 8-битных черно-белых карт высот в бампмаппинге.
В общем, как и бампмаппинг, это тоже «дешевый» метод для добавления детализации к моделям сравнительно низкой геометрической сложности, без использования большего количества реальной геометрии, только более продвинутый. Одно из наиболее интересных применений техники — существенное увеличение детализации низкополигональных моделей при помощи карт нормалей, полученных обработкой такой же модели высокой геометрической сложности. Карты нормалей содержат более подробное описание поверхности, по сравнению с бампмаппингом и позволяют представить более сложные формы. Идеи по получению информации из высокодетализированных объектов были озвучены в середине 90-х годов прошлого века, но тогда речь шла об использовании для Displacement Mapping. Позднее, в 1998 году, были представлены идеи о перенесении деталей в виде карт нормалей от высокополигональных моделей в низкополигональные.
Карты нормалей предоставляют более эффективный способ для хранения подробных данных о поверхностях, по сравнению с простым использованием большого количества полигонов. Единственное серьезное их ограничение в том, что они не очень хорошо подходят для крупных деталей, ведь нормалмаппинг на самом деле не добавляет полигонов и не изменяет форму объекта, он только создает видимость этого. Это всего лишь симуляция деталей, на основе расчета освещения на пиксельном уровне. На крайних полигонах объекта и больших углах наклона поверхности это очень хорошо заметно. Поэтому наиболее разумный способ применения нормалмаппинга состоит в том, чтобы сделать низкополигональную модель достаточно детализированной для того, чтобы сохранялась основная форма объекта, и использовать карты нормалей для добавления более мелких деталей.
Карты нормалей обычно создаются на основе двух версий модели, низко- и высокополигональной. Низкополигональная модель состоит из минимума геометрии, основных форм объекта, а высокополигональная содержит все необходимое для максимальной детализации. Затем, при помощи специальных утилит они сравниваются друг с другом, разница рассчитывается и сохраняется в текстуре, называемой картой нормалей. При ее создании дополнительно можно использовать и bump map для очень мелких деталей, которые даже в высокополигональной модели не смоделировать (поры кожи, другие мелкие углубления).
Карты нормалей изначально были представлены в виде обычных RGB текстур, где компоненты цвета R, G и B (от 0 до 1) интерпретируются как координаты X, Y и Z. Каждый тексель в карте нормалей представлен как нормаль точки поверхности. Карты нормалей могут быть двух видов: с координатами в model space (общей системе координат) или tangent space (термин на русском — «касательное пространство», локальная система координат треугольника). Чаще применяется второй вариант. Когда карты нормалей представлены в model space, то они должны иметь три компоненты, так как могут быть представлены все направления, а когда в локальной системе координат tangent space, то можно обойтись двумя компонентами, а третью получить в пиксельном шейдере.
Современные приложения реального времени до сих пор сильно проигрывают пререндеренной анимации по качеству изображения, это касается, прежде всего, качества освещения и геометрической сложности сцен. Количество вершин и треугольников, рассчитываемых в реальном времени, ограничено. Поэтому очень важны методы, позволяющие снизить количество геометрии. До нормалмаппинга были разработаны несколько таких методов, но низкополигональные модели даже с бампмаппингом получаются заметно хуже более сложных моделей. Нормалмаппинг хоть и имеет несколько недостатков (самый явный — так как модель остается низкополигональной, это легко видно по ее угловатым границам), но итоговое качество рендеринга заметно улучшается, оставляя геометрическую сложность моделей низкой. В последнее время хорошо видно увеличение популярности данной методики и использование ее во всех популярных игровых движках. «Виной» этому — комбинация отличного результирующего качества и одновременное снижение требований к геометрической сложности моделей. Техника нормалмаппинга сейчас применяется почти повсеместно, все новые игры используют ее максимально широко. Вот лишь краткий список известных ПК игр с использованием нормалмаппинга: Far Cry, Doom 3, Half-Life 2, Call of Duty 2, F.E.A.R., Quake 4. Все они выглядят намного лучше, чем игры прошлого, в том числе из-за применения карт нормалей.
Есть лишь одно негативное последствие применения этой техники — увеличение объемов текстур. Ведь карта нормалей сильно влияет на то, как будет выглядеть объект, и она должна быть достаточно большого разрешения, поэтому требования к видеопамяти и ее пропускной способности удваиваются (в случае несжатых карт нормалей). Но сейчас уже выпускаются видеокарты с 512 мегабайтами локальной памяти, пропускная способность ее постоянно растет, разработаны методы сжатия специально для карт нормалей, поэтому эти небольшие ограничения не слишком важны, на самом деле. Гораздо больше эффект, который дает нормалмаппинг, позволяя использовать сравнительно низкополигональные модели, снижая требования к памяти для хранения геометрических данных, улучшая производительность и давая весьма достойный визуальный результат.
Меню
- VJ новости
- VJ события
- новости VJ программ
- Новости VJ видео
- Новости VJ железа
- Видео инсталляции
- Остальные новости